Copper(II)– N_2S_2 Complexes of Bidentate *N*-Substituted β -Aminothiones

Peter Beardwood and John F. Gibson*

Department of Chemistry, Imperial College of Science and Technology, London SW7 2AY, U.K.

Bis(α,β -unsaturated *N*-substituted β -aminothione)Cu^{II} complexes, synthesised at low temperature, show intense S \rightarrow Cu charge-transfer bands and have e.s.r. spectra with small $|A_z|$ (Cu) indicative of pseudo-tetrahedral CuN₂S₂ co-ordination similar to that found for the type 1 centres in blue copper proteins.

Although there have been several reports of copper(II) complexes involving quadridentate N,N'-substituted bis(β -

aminothiones) (1),¹⁻³ corresponding complexes of the bidentate ligands (2) have not been described. Comparisons

Figure 1. Electronic spectrum of $Cu^{II}(Bu^{\dagger}NMeHMeS)_2$ in tetrahydrofuran at -50 °C.

have been made between the spectroscopic and redox properties of $(1)^3$ and those characteristic of type 1 blue copper protein centres for which low symmetry CuN₂S₂ co-ordination is known⁴ or speculated to be present. The corresponding properties of (2), in which distortion from planar co-ordination could be controlled by varying the steric bulk of the amino substituent R, are of additional and surpassing interest for comparison with the distinctive features of the type 1 protein site. However, owing to a facile reduction of Cu^{II} by the bidentate β -aminothione ligand, orange diamagnetic Cu^I complexes are the product of attempted syntheses of (2) at room temperature. We report here that dark green/blue copper(II) complexes (2) may be isolated if the complexation reaction is undertaken at low temperature.

The ligands in (2) ($R^1 = R^2 = Me$, $R^3 = H$) were prepared by the method of Gerlach and Holm⁵ and we employ a similar abbreviation to theirs; R-NMeHMeS = R-NR²R³R¹S. Cu¹¹ complexes were synthesised by mixing methanolic solutions of ligand and copper(II) chloride at low temperatures (-30 to -70 °C depending on the bulk of R). The dark coloured solid produced on standing was collected by low-temperature filtration and drying. Satisfactory analytical data were obtained for R = Bu¹ and R = p-MeC₆H₄. However, for the more bulky R = cyclohexyl group the less stable product was always contaminated by some Cu¹(cyclohexyl-NMeHMeS) and attempts to purify the product by recrystallisation led only to further decomposition. The impurity does not, however, interfere with the present spectroscopic investigations.

Figure 1 shows the electronic absorption spectrum at -50 °C for Cu^{II}(Bu^I–NMeHMeS)₂ dissolved in tetrahydrofuran. The band maxima occur at 603 (1400) and 470 nm (1700) (the figures in brackets are extinction coefficients ϵ in dm³ mol⁻¹ cm⁻¹). The corresponding maxima for Cu^{II}-(*p*-MeC₆H₄–NMeHMeS)₂ are observed at 620 (1600) and 540 nm (1600) and for Cu^{II}(cyclohexyl–NMeHMeS)₂ at 678

Figure 2. E.s.r. spectra of (a) ${}^{63}Cu^{11}(Bu^1-NMeHMeS)_2$ in MeOH at 100 K (----) (microwave frequency, microwave power, modulation amplitude = 9.224 GHz, 2 mW, 0.25 mT) together with simulation according to the parameters given in the text (---); (b) ${}^{63}Cu^{11}$ -doped Zn¹¹(cyclohexyl-NMeHMeS)₂ at 100 K (9.229 GHz, 2 mW, 0.1 mT).

and 504 nm. As judged from their high intensity these bands originate from $S \rightarrow Cu$ charge-transfer transitions, but their exact assignment is uncertain. Type 1 blue copper protein centres show bands of similar origin in the range 550— 790 nm, with the most intense blue band at 600—630 nm.⁶ Weaker absorption bands in the range 960—1200 nm observable in the reflectance spectra of the copper complexes (2) are assignable to d-d transitions and their low energy in comparison with the complexes of type (1)¹⁻³ is indicative of substantial distortion from square-planar toward tetrahedral co-ordination geometry.

An e.s.r. spectrum of ⁶³Cu¹¹(Buⁱ-NMeHMeS)₂ in MeOH at 100 K is shown in Figure 2(a) together with a simulation assuming a superhyperfine interaction with two nitrogens and employing the following parameters $g_x = 2.019, g_y =$ and employing the following parameters $g_x = 2.09$, $g_y = 2.041$, $g_z = 2.150$, $A_x(Cu) = A_y = -0.0021 \text{ cm}^{-1}$, $A_z = -0.0148 \text{ cm}^{-1}$, $|{}^{N}A_x| = 0.0012 \text{ cm}^{-1}$, $|{}^{N}A_y| = |A^{N}_z| = 0.0011 \text{ cm}^{-1}$. Corresponding spectra for (2) with R = p-MeC₆H₄ and R = cyclohexyl have $A_z = -0.0132$ cm⁻¹, $g_z = 2.139$ and $A_z = -0.0130$ cm⁻¹, $g_z = 2.173$ respectively. Compared with $A_z = -0.0177$ cm⁻¹, $g_z = 2.118^2$ for the essentially planar (1) with $R^1 = R^2 = Me$, $R^3 = H$, n = 2the reduced magnitude of $|A_z|$ in the present complexes is indicative of their anticipated distortion toward tetrahedral co-ordination. The drop in $|A_z|$ on going from $\mathbf{R} = \mathbf{B}\mathbf{u}^{i}$ to $\mathbf{R} = cyclohexyl$ is attributed to an increase in the extent of this distortion as a consequence of increased steric bulk. When doped into the analogous zinc complex ⁶³Cu(cyclohexyl-NMeHMeS)₂ shows a spectrum characteristic of further twisting of the chelate planes, Figure 2(b), with $A_z =$ -0.0097 cm^{-1} and $g_z = 2.196$. These latter parameters closely approach those of $A_z = -0.0090 \text{ cm}^{-1}$ and $g_z =$ 2.190 found for the type 1 centre in fungal laccase.⁷ The

other $R = p-MeC_6H_4$ and $R = Bu^1$ copper-doped zinc complexes have higher $|A_z|$ parameters but show well resolved 1:2:3:2:1 superhyperfine splitting on the low field Cu hyperfine peaks confirming the expected co-ordination by two nitrogens.

The well established inverse $|A_z|$ vs. g_z relationship for Cu¹¹ with varying degrees of tetrahedral distortion from square planar which has been extrapolated for CuN₂S₂ complexes from observations made on CuN₄ and CuS₄ species⁸ is directly confirmed by the present results which also give additional confirmation of the need to assume low symmetry CuN₂S₂ co-ordination in the interpretation of type 1 blue copper protein spectra.

We hope in the future to report investigations on a more extensive series of these copper(II) complexes involving changes in the R and also the R^1 and R^2 substituents.

Received, 28th June 1983; Com. 862

References

- 1 P. R. Blum, R. M. C. Wei, and S. C. Cummings, *Inorg. Chem.*, 1974, 13, 450.
- 2 G. D. Shields, S. Christiano, and R. D. Bereman, J. Inorg. Nucl. Chem., 1978, 40, 1953.
- 3 R. D. Bereman, J. R. Dorfman, J. Bordner, D. P. Rillema, P. McCarthy, and G. D. Shields, J. Inorg. Biochem., 1982, 16, 47.
- 4 P. M. Colman, H. C. Freeman, J. M. Guss, M. Murata, V. A. Norris, J. A. M. Ramshaw, and M. P. Venkatappa, *Nature (London)*, 1978, **272**, 319; E. T. Adman and L. H. Jensen, *Isr. J. Chem.*, 1981, **21**, 8.
- 5 D. H. Gerlach and R. H. Holm, J. Am. Chem. Soc., 1969, 91, 3457.
- 6 E. I. Solomon, J. W. Hare, D. M. Dooley, J. H. Dawson, P. J. Stephens, and H. B. Gray, J. Am. Chem. Soc., 1980, 102, 168.
- 7 B. G. Malmström, B. Reinhammar, and T. Vänngård, Biochim. Biophys. Acta, 1968, 156, 67.
- 8 U. Sakaguchi and A. W. Addison, J. Chem. Soc., Dalton Trans., 1979, 600.